A NOTE ON THE FLUSHING PROCESS IN SALINE SOIL
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In the existing literarure on the motion of saline solutions in soil
(e.g., [1,21), it is usually postulated that the velocity of the solution
is independent of its concentration. As pointed out in [2], this assump-
tion is valid if the concentration is low., However, in heavily saline
soils the concentrations in the flush water may reach values close to the
limiting saturation c» (with common salt, for example, the limiting
saturation concentration of a sclution at 10° C is ¢« = 385 g/1).

The viscosity and density of the solution (mineralized water) in-
crease with an increase in the concentration of the dissolved salts, the
viscosity being much more sensitive to changes in mineralization than
the density; accordingly, as the concentration varies from zero to the
saturation limit, the seepage velocity at a given pressure gradient may
fall approximately by a factor of two {3].

Mineralization (g/1):

0 40-50 60-70 100-110 180-200

Viscousity g (cP):
1,0 1.3 1,3-1,4 1.46-1,50 1.8~1.9
Density p (g/cm %,
1.0 1.03 1,05 1.08 1.15

We assume that the relations between y and p of the solution and
c (the concentration) are linear:

B(e) =g+ Be, ple) = pp+ ac. 1

A satisfactory reflection of the actual p(c) and p(c) relations can
be obtained by means of a suitable choice of coefficients & and 8 in
Egs. (1).

Considering one-dimensional motion directed vertically downward
along the x-axis and neglecting the diffusion effect, we arrive at the
equations of the process:
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Here, v(x,c,1) is the velocity of a solution of concentration c(x, t);
k and o are the permeability and porosity of the soil, respectively (as-
sumed constant); p(x,t) is the pressure in the solution; t is the time;
A is the salt transfer coefficient characterizing the rate at which the
salts are dissolved.

Let the pressures at the surface of the soil (x = 0) and at the station-
ary or moving boundary (x = H or x = h(t) € [0, H]) be known:

{0, 1) = po(t), p (k. 8) = pr (). 4
We write the integral of the first of Egs. (3) in the form
d
v(x, ¢ t) =0 "7~ ()

Here, A(t) is an arbitrary differentiable function subject to deter-
mination, with A(0) = 0, Substituting (5) into the second of Egs. (3),
we obtain

dc dA de
wt g m=rl—9. (8)

For the case of fresh flush water, we have the initial and boundary
conditions:

(0, ), 0) = f (). 0]

Obviously, in the case of a moving boundary, the initial condition
should not be given. The system of characteristics of Eq. (6) is written

¢ (z,
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thus:

dt de de
T (c* - C) ’

Integrating this system, with respect to t, from tg to t, with respect
to x, from x4 to x, and, with respect to ¢, from ¢y to ¢, we find that

Cyp— €

A@)—AQ@w=2— 2, (8

1
l—fo:—Tln e 0y
It is easy to see that, in view of conditions (7), the integral surface
¢ = ¢(x, 1) will have a break (or discontinuity, if f(0) # 0) along the
characteristic passing through the point x =t = 0.
Accordingly, serting x = 0 and ¢y = 0 and eliminaring the param-
meter tg, we find

1
———1In

P AT A () - 2] = - I

O<e < AR
Here, y = A7 (x) is the inverse of the function x = A(y).
Similarly, setting ty =0 and ¢ = f(xo) and eliminating X, we obtain

Ce—C

T E—A®D] (A <z<H).

t 11
_~Tn

Thus, the function ¢(x, t) can be written in the form

C*U—eXp (=t AT [A(

O<es4q
c(x, £)= )

1) — z]}
) 9

ey — eXp (— 71)) [¢p — [ (& — A)]

(A< a<CH).

From (2), we obtain

wic) dA

o
=—"% & *+

dx

+ 2o (c).

Integrating with respect to x from 0 to H, bearing inmind condition
(6), we find that

d
Pl(t)—Po(t)=—Z Ci:[ u (c)dw -+ K (c)dxi{—}—
0 A
o H .
—l—g[SP(c)dx+gp<c)dx!.
0

Using (1), (2), and (9), we reduce the equation for A(t) to the
form

kodt

moar B+ B(D— E)
c dA

g[Ba+o(D—E)+ po— pi]

By = (uo-+ Be.) H —Bo, et (H — 4),

By == (pg - ae,)H — ae, e~ (H — A),

D = et [F(H—4)— F(0)],
A

E:c*mtS exp [pA71 (4 — )] dz . (10)
0

Here, F = S (z) dz is a known function. In the case of a moving
boundary, A must be substituted for H in Eq. (10). It is easy to see
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that Eq. (10) reduces to the following system of first-order differential
equations:

kEodt Bi+B[D— ¢y exp (— 1) D(A4)]
g{B:+a[D—c exp (—y) DA} +Po— P’

s dA4 T
©O)=0, A0 =0, (11)

©
i =exp [1t (4)],

For the initial concentration distribution we assume the linear law

f@)=c, 0)+M;_(9ﬂx‘
We set p; = pp in system (11) and reduce it to the dimensionless
form
dt
Ay
_m+1/r)exp(150) — P (A — {1 — Ay [h— o (L — 4y)]
e (141711} exp (357) — D (A1) — (1 — A1) [fr— o (1 — 4]
d® (A1)

A, =exp (1s7v), T(0)=0, @O0)=0,
A Y k_ gpo
A=, T=R, w=g. B=5H,
_ Bes e o, (0,0
N="pr =T Sp=1~— PR
01— 82 c(H,0)
g =l (12)

If the salts are only in the liquid phase, theny; =0 and the solution
of the system will be

© (4) =4
S £ TS S 1
T= 1 A)+(T2-—1) = X
(27204° +8:%12 — R) (2720 + 8:°12 + R)

X DG 0 A £ 6,57 + B) (2120 - 61°12 — B)
(R=V B —bra0, A°=1— A4,
6 =1—8, 102> 4dw). (13

For the case w =0, i.e,, when the initial concentration distri-
bution is constant with respect to depth, we have

R e Pl (e ey oy ) | IS

Hence, with A; =1, we find the total desalinization time.

Curves 1=3 in Fig, 1 illustrate certain numerical and analyrical
solutions of 7(A,) for various parameters: curve 1 corresponds to the
case for §; = 1, §,=0, andy, = 0.5; curve 2 corresponds to the case for
ys =0 and §; = §, = 0.5; curve 3 corresponds to the case for §; = 1,

1y

N4

Fig, 1
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8, =0, and y3 = 0. In these examplesy,; = 1.6 and y, = 0,25, Curve
4 corresponds to the limiting case y; =y, =y3 = 0.

We now formulate the problem of determining the function 7(A;)
on the assumption that the saline soil is dry and that the soil air is
always located in the closed space betweenthe frontand the impervious
horizon, We also assume that, in this case, the pressure p; of the soil
air will increase proportionately as it is compressed by the seeping fluid,
i.e., that we can use the equation of state of a perfect gas at constant
temperature in the form

A
poH = py (H — A)=const, or PO‘—P1=P01'”:_1—A;- (15)

Since initially the front coincides with the surface of the soil, sub-
stituting (13) in (11) and setting H = A and F = 0, we obtain the fol-
lowing system:

A (1 - 11) Ay exp (157) — 11D (Ay)
dA; (T 7o) Ay exp (7s7) — 12® (A1) — koA exp (1s7) ’

d®
a4 =), T1(©=0, ©0)=0,
. A Po
M=, b=l (16)

For physical considerations, it is clear that, given the soil-air
trapping condition described, the front will never reach the impervious
horizon; its distance from the surface of the soil will tend to the fol-
lowing limit: 1im A,(7) =7 as 7> e,

Thus, lim (dA,/dT) = 0 as T — « and

1
Y= 1T he/(ra+ 1) -

In particular, wheny, =0, the solution of system (14) has the form

A 1
v [t -S|, =

Some cases of motion with entrapment are presented in Fig. 2. In
this case, the salt concentration in the solution is given by

e(z, 1) = ¢, (1 — exp (—yt -+ yA Y4 (1) — 2]}
0 z<4(@).
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